primes/
sieve.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
type Word = u64;

const WORD_BITS: usize = Word::BITS as usize;

// The little-endian index of each 1 bit, times two and plus one, is prime.  For
// example, the first ten bits are:
//
//  bits:       1101101110
//  indexes:    9876543210
//
// Meaning:
//
//  index             number    prime?
//  -----             ------    ------
//    0     * 2 + 1 =    1        0
//    1     * 2 + 1 =    3        1
//    2     * 2 + 1 =    5        1
//    3     * 2 + 1 =    7        1
//    4     * 2 + 1 =    9        0
//    5     * 2 + 1 =   11        1
//    6     * 2 + 1 =   13        1
//    7     * 2 + 1 =   15        0
//    8     * 2 + 1 =   17        1
//    9     * 2 + 1 =   19        1
const FIRST_WORD: Word = 0x816d_129a_64b4_cb6e;

pub struct Primes<'a> {
    sieve: &'a mut Sieve,
    known: u32,
}

impl Iterator for Primes<'_> {
    type Item = u32;

    fn next(&mut self) -> Option<Self::Item> {
        self.known = match self.known {
            0 => 2,
            2 => 3,
            _ => ((self.known + 2)..)
                .step_by(2)
                .find(|&n| self.sieve.is_prime(n))
                .expect("another prime"),
        };
        Some(self.known)
    }
}

pub struct Factors<'a> {
    primes: Primes<'a>,
    value: u32,
}

impl Iterator for Factors<'_> {
    type Item = (u32, u32); // (factor, exponent)

    fn next(&mut self) -> Option<Self::Item> {
        let mut value = self.value;

        // The remaining value has no prime factors.
        if value < 2 {
            return None;
        }

        for prime in self.primes.by_ref() {
            // If the next prime is greater than the square root of the value,
            // then it won't divide the value, because we already factored out
            // whatever the quotient would be (since it's smaller than the
            // prime). The remaining value (after all the divisions we've
            // already applied to it) is either 1 (because we've divided it by
            // all its factors), in which case we already returned None; or is
            // prime itself, which is the only way it could still have a factor
            // greater than its square root.
            if prime * prime > value {
                self.value = 1;
                return Some((value, 1));
            }

            // Skip any prime that isn't a factor of our value.
            if value % prime != 0 {
                continue;
            }

            // Reduce our value, counting how many times this prime divides it.
            let mut power = 1;
            while {
                value /= prime;
                value % prime == 0
            } {
                power += 1;
            }
            self.value = value;
            return Some((prime, power));
        }
        unreachable!()
    }
}

#[derive(Default)]
pub struct Sieve {
    words: Vec<Word>,
}

impl Sieve {
    fn mark_nonprime(&mut self, value: u32) {
        if value % 2 == 0 {
            return; // We don't store bits for even numbers, anyway.
        }
        let index = value as usize / 2;
        self.words[index / WORD_BITS] &= !(1 << (index % WORD_BITS));
    }

    fn is_known_prime(&self, value: u32) -> bool {
        // We get twice as many bits per word by skipping even-indexed bits,
        // since no even numbers past 2 are prime.  We special-case 2.
        if value % 2 == 0 {
            return value == 2;
        }
        let index = (value / 2) as usize;
        self.words[index / WORD_BITS] & (1 << (index % WORD_BITS)) != 0
    }

    // TODO: Why is this a u32 rather than a usize?  Why not support 1<<32 primes?
    fn num_values(&self) -> u32 {
        u32::try_from(self.words.len() * WORD_BITS * 2).expect("sieve max size exceeded")
    }

    pub fn grow(&mut self) {
        if self.words.is_empty() {
            self.words.push(FIRST_WORD);
            return;
        }

        // Append a bunch of ones, then iterate through known primes and mark
        // all their multiples composite by clearing bits.  We always have at
        // least enough known primes to fill out twice the size of our table,
        // but we cap the number of new bits added at any time to avoid
        // overflowing our value type (since we use indexes as values).  The
        // cap value is arbitrary.
        //
        // TODO: What was I thinking when I wrote about "having at least enough primes?"
        let num_old_values = self.num_values();

        // TODO: This caps the total number of words, not the number of _new_ words.
        let new_len = 1_000_000.min(self.words.len() * 2);
        self.words.resize(new_len, !0);

        let num_new_values = self.num_values();
        for value in (3..num_old_values).step_by(2) {
            if !self.is_known_prime(value) {
                continue; // Skip non-prime.
            }
            let start = num_old_values - num_old_values % value + value;
            for new_index in (start..num_new_values).step_by(value as usize) {
                self.mark_nonprime(new_index); // New index is divisible by value.
            }
        }
    }

    pub fn is_prime(&mut self, value: u32) -> bool {
        while self.num_values() <= value {
            self.grow();
        }
        self.is_known_prime(value)
    }

    pub fn primes(&mut self) -> Primes {
        Primes {
            sieve: self,
            known: 0,
        }
    }

    pub fn factors(&mut self, value: u32) -> Factors {
        Factors {
            primes: self.primes(),
            value,
        }
    }
}

#[cfg(test)]
mod tests {
    use std::collections::HashSet;

    use crate::{UNDER_1000, UNDER_100000};

    use super::*;

    #[test]
    fn test_sieve_is_prime() {
        let mut sieve = Sieve::default();
        let known: HashSet<_> = UNDER_100000.into_iter().collect();
        for n in 0..100_000 {
            assert_eq!(
                sieve.is_prime(n),
                known.contains(&n),
                "whether {n} is prime"
            );
        }
    }

    #[test]
    fn test_sieve_primes() {
        let want = UNDER_1000;
        let mut sieve = Sieve::default();
        let got: Vec<_> = sieve.primes().take(want.len()).collect();
        assert_eq!(got, want);
    }

    #[test]
    fn test_sieve_factors() {
        let mut sieve = Sieve::default();
        let table: &[(u32, &[(u32, u32)])] = &[
            (0, &[]),
            (1, &[]),
            (2, &[(2, 1)]),
            (3, &[(3, 1)]),
            (4, &[(2, 2)]),
            (5, &[(5, 1)]),
            (6, &[(2, 1), (3, 1)]),
            (7, &[(7, 1)]),
            (8, &[(2, 3)]),
            (18, &[(2, 1), (3, 2)]),
        ];
        for &(arg, want) in table {
            let got: Vec<_> = sieve.factors(arg).collect();
            assert_eq!(got, want, "factorization of {arg}");
        }
    }
}