primes/sieve.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
type Word = u64;
const WORD_BITS: usize = Word::BITS as usize;
// The little-endian index of each 1 bit, times two and plus one, is prime. For
// example, the first ten bits are:
//
// bits: 1101101110
// indexes: 9876543210
//
// Meaning:
//
// index number prime?
// ----- ------ ------
// 0 * 2 + 1 = 1 0
// 1 * 2 + 1 = 3 1
// 2 * 2 + 1 = 5 1
// 3 * 2 + 1 = 7 1
// 4 * 2 + 1 = 9 0
// 5 * 2 + 1 = 11 1
// 6 * 2 + 1 = 13 1
// 7 * 2 + 1 = 15 0
// 8 * 2 + 1 = 17 1
// 9 * 2 + 1 = 19 1
const FIRST_WORD: Word = 0x816d_129a_64b4_cb6e;
pub struct Primes<'a> {
sieve: &'a mut Sieve,
known: u32,
}
impl Iterator for Primes<'_> {
type Item = u32;
fn next(&mut self) -> Option<Self::Item> {
self.known = match self.known {
0 => 2,
2 => 3,
_ => ((self.known + 2)..)
.step_by(2)
.find(|&n| self.sieve.is_prime(n))
.expect("another prime"),
};
Some(self.known)
}
}
pub struct Factors<'a> {
primes: Primes<'a>,
value: u32,
}
impl Iterator for Factors<'_> {
type Item = (u32, u32); // (factor, exponent)
fn next(&mut self) -> Option<Self::Item> {
let mut value = self.value;
// The remaining value has no prime factors.
if value < 2 {
return None;
}
for prime in self.primes.by_ref() {
// If the next prime is greater than the square root of the value,
// then it won't divide the value, because we already factored out
// whatever the quotient would be (since it's smaller than the
// prime). The remaining value (after all the divisions we've
// already applied to it) is either 1 (because we've divided it by
// all its factors), in which case we already returned None; or is
// prime itself, which is the only way it could still have a factor
// greater than its square root.
if prime * prime > value {
self.value = 1;
return Some((value, 1));
}
// Skip any prime that isn't a factor of our value.
if value % prime != 0 {
continue;
}
// Reduce our value, counting how many times this prime divides it.
let mut power = 1;
while {
value /= prime;
value % prime == 0
} {
power += 1;
}
self.value = value;
return Some((prime, power));
}
unreachable!()
}
}
#[derive(Default)]
pub struct Sieve {
words: Vec<Word>,
}
impl Sieve {
fn mark_nonprime(&mut self, value: u32) {
if value % 2 == 0 {
return; // We don't store bits for even numbers, anyway.
}
let index = value as usize / 2;
self.words[index / WORD_BITS] &= !(1 << (index % WORD_BITS));
}
fn is_known_prime(&self, value: u32) -> bool {
// We get twice as many bits per word by skipping even-indexed bits,
// since no even numbers past 2 are prime. We special-case 2.
if value % 2 == 0 {
return value == 2;
}
let index = (value / 2) as usize;
self.words[index / WORD_BITS] & (1 << (index % WORD_BITS)) != 0
}
// TODO: Why is this a u32 rather than a usize? Why not support 1<<32 primes?
fn num_values(&self) -> u32 {
u32::try_from(self.words.len() * WORD_BITS * 2).expect("sieve max size exceeded")
}
pub fn grow(&mut self) {
if self.words.is_empty() {
self.words.push(FIRST_WORD);
return;
}
// Append a bunch of ones, then iterate through known primes and mark
// all their multiples composite by clearing bits. We always have at
// least enough known primes to fill out twice the size of our table,
// but we cap the number of new bits added at any time to avoid
// overflowing our value type (since we use indexes as values). The
// cap value is arbitrary.
//
// TODO: What was I thinking when I wrote about "having at least enough primes?"
let num_old_values = self.num_values();
// TODO: This caps the total number of words, not the number of _new_ words.
let new_len = 1_000_000.min(self.words.len() * 2);
self.words.resize(new_len, !0);
let num_new_values = self.num_values();
for value in (3..num_old_values).step_by(2) {
if !self.is_known_prime(value) {
continue; // Skip non-prime.
}
let start = num_old_values - num_old_values % value + value;
for new_index in (start..num_new_values).step_by(value as usize) {
self.mark_nonprime(new_index); // New index is divisible by value.
}
}
}
pub fn is_prime(&mut self, value: u32) -> bool {
while self.num_values() <= value {
self.grow();
}
self.is_known_prime(value)
}
pub fn primes(&mut self) -> Primes {
Primes {
sieve: self,
known: 0,
}
}
pub fn factors(&mut self, value: u32) -> Factors {
Factors {
primes: self.primes(),
value,
}
}
}
#[cfg(test)]
mod tests {
use std::collections::HashSet;
use crate::{UNDER_1000, UNDER_100000};
use super::*;
#[test]
fn test_sieve_is_prime() {
let mut sieve = Sieve::default();
let known: HashSet<_> = UNDER_100000.into_iter().collect();
for n in 0..100_000 {
assert_eq!(
sieve.is_prime(n),
known.contains(&n),
"whether {n} is prime"
);
}
}
#[test]
fn test_sieve_primes() {
let want = UNDER_1000;
let mut sieve = Sieve::default();
let got: Vec<_> = sieve.primes().take(want.len()).collect();
assert_eq!(got, want);
}
#[test]
fn test_sieve_factors() {
let mut sieve = Sieve::default();
let table: &[(u32, &[(u32, u32)])] = &[
(0, &[]),
(1, &[]),
(2, &[(2, 1)]),
(3, &[(3, 1)]),
(4, &[(2, 2)]),
(5, &[(5, 1)]),
(6, &[(2, 1), (3, 1)]),
(7, &[(7, 1)]),
(8, &[(2, 3)]),
(18, &[(2, 1), (3, 2)]),
];
for &(arg, want) in table {
let got: Vec<_> = sieve.factors(arg).collect();
assert_eq!(got, want, "factorization of {arg}");
}
}
}